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This document will be updated to include alternative solutions provided by contestants, after the

competition has been marked.

Problem A1

The five sides and five diagonals of a regular pentagon are drawn on a piece of paper. Two

people play a game, in which they take turns to colour one of these ten line segments. The first

player colours line segments blue, while the second player colours line segments red. A player

cannot colour a line segment that has already been coloured. A player wins if they are the first

to create a triangle in their own colour, whose three vertices are also vertices of the regular

pentagon. The game is declared a draw if all ten line segments have been coloured without a

player winning.

Determine whether the first player, the second player, or neither player can force a win.

Solution

We will prove that the first player can force a win. In other words, we will prove that no matter

how the second player responds, the first player can win.

Suppose that the vertices of the pentagon are P1, P2, P3, P4, P5. Let the first player start the

game by colouring the line segment P1P2. Without loss of generality, we may assume that the

second player responds by colouring P2P3 or P3P4.

• Case 1: The second player responds by colouring P2P3.

The first player then colours P2P4, forcing the second player to colour P1P4 to avoid losing.

The first player then colours P2P5 and wins the game by colouring either P1P5 or P4P5 on

their next move.
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• Case 2: The second player responds by colouring P3P4.

The first player then colours P1P5, forcing the second player to colour P2P5 to avoid losing.

The first player then colours P1P3 and wins the game by colouring either P2P3 or P3P5 on

their next move.

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

Thus, we have shown that no matter how the second player responds, the first player can win.

Comments

There are many variations and generalisations of this problem. The interested reader may like

to consider the following three.

• For each integer n ≥ 3, determine which player can force a win if the game is played on a

regular n-sided polygon.

• Fix an integer k ≥ 3. Suppose that a player wins if they are the first to colour all of the

line segments Q1Q2, Q2Q3, . . . , Qk−1Qk, QkQ1, where Q1, Q2, . . . , Qk are distinct vertices

of a given polygon. For each integer n ≥ 3, determine which player can force a win if the

game is played on a regular n-sided polygon.

• Fix an integer k ≥ 3. Suppose that a player wins if they are the first to colour all of the

line segments QiQj for 1 ≤ i < j ≤ k, where Q1, Q2, . . . , Qk are distinct vertices of a given

polygon. For each integer n ≥ 3, determine which player can force a win if the game is

played on a regular n-sided polygon.
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Problem A2

Let a1, a2, a3, . . . be the sequence of real numbers defined by a1 = 1 and

am =
1

a21 + a22 + · · ·+ a2m−1
for m ≥ 2.

Determine whether there exists a positive integer N such that

a1 + a2 + · · ·+ aN > 20172017.

Solution

First, we note that 0 < am = 1
1+a22+···+a2m−1

≤ 1 for all integers m ≥ 2. One of the following two

cases must arise.

• Case 1: The sequence a1, a2, a3, . . . does not converge to 0.

In this case, the series a1 + a2 + a3 + · · · diverges to infinity.

• Case 2: The sequence a1, a2, a3, . . . converges to 0.

In this case, the sequence given by

1

am
= a21 + a22 + · · ·+ a2m−1

approaches infinity as m approaches infinity. However, the inequality 0 < am ≤ 1 implies

that am ≥ a2m. It follows that

a1 + a2 + · · ·+ am−1 ≥ a21 + a22 + · · ·+ a2m−1 =
1

am
.

Therefore, a1 + a2 + · · ·+ am−1 approaches infinity as m approaches infinity.

In either case, we have shown that the series a1 + a2 + a3 + · · · diverges to infinity. Therefore,

there exists a positive integer N such that a1 + a2 + · · ·+ aN > 20172017.

Comments

The interested reader may like to prove that it is in fact Case 2 in the solution above that holds

true — in other words, the sequence a1, a2, a3, . . . converges to 0.
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Problem A3

For each positive integer n, let M(n) be the n×n matrix whose (i, j) entry is equal to 1 if i+ 1

is divisible by j, and equal to 0 otherwise.

Prove that M(n) is invertible if and only if n+ 1 is square-free.

(An integer is square-free if it is not divisible by the square of an integer larger than 1.)

Solution

Fix a positive integer n. For positive integers a and b, let d(a, b) = 1 if a is divisible by b and

let d(a, b) = 0 otherwise. For every positive integer m, define the vector

v(m) = (d(m, 1), d(m, 2), . . . , d(m,n)) ∈ Rn.

Observe that the rows of the matrix M(n) are v(2), v(3), . . . , v(n+ 1). Our proof hinges on the

following result.

Lemma. If the prime factorisation of n+ 1 is pa11 p
a2
2 · · · p

ak
k , then∑

I

(−1)|I| v

(
n+ 1∏
i∈I pi

)
= (0, 0, . . . , 0),

where the summation is over all subsets of {1, 2, . . . , k}.

Proof. Let us consider the jth component of the left side of the equation, where 1 ≤ j ≤ n.

If n + 1 is not divisible by j, then the jth component of each summand is 0. Hence, the jth

component of the left side of the equation is 0.

If n + 1 is divisible by j, then we can write n+1
j = pb11 p

b2
2 · · · p

bk
k , where 0 ≤ bi ≤ ai for each i.

Let J = {1 ≤ i ≤ k | bi > 0}.

Then the jth component of the left side of the equation is∑
I

(−1)|I| d

(
n+ 1∏
i∈I pi

,
n+ 1

pb11 p
b2
2 · · · p

bk
k

)
=
∑
I

(−1)|I| d

(
pb11 p

b2
2 · · · p

bk
k ,
∏
i∈I pi

)
=
∑
I⊆J

(−1)|I| d

(
pb11 p

b2
2 · · · p

bk
k ,
∏
i∈I pi

)
=
∑
I⊆J

(−1)|I|

= 0.

The first equality uses the fact that n+1
a is divisible by n+1

b if and only if b is divisible by a. The

second and third equalities use the fact that d
(
pb11 p

b2
2 · · · p

bk
k ,
∏
i∈I pi

)
is equal to 1 if I ⊆ J , and

equal to 0 otherwise. The final equality uses the fact that j ≤ n, so J 6= ∅.

We now consider two cases.
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• Case 1: The integer n+ 1 is not square-free.

Note that the expression ∑
I

(−1)|I| v

(
n+ 1∏
i∈I pi

)
is a linear combination of v(1), v(2), . . . , v(n+ 1) in which the coefficient of v(n+ 1) is 1.

Furthermore, since n+ 1 is not square-free, it must be divisible by p2 for some prime p. It

follows that the coefficient of v(1) is 0.

Therefore, one can use elementary row operations to replace the final row of the matrix

M(n), which is the vector v(n+ 1), with the vector∑
I

(−1)|I| v

(
n+ 1∏
i∈I pi

)
,

without changing the determinant. By the lemma above, this is simply the zero vector.

Therefore, M(n) has determinant 0 and is not invertible.

• Case 2: The integer n+ 1 is square-free.

Since n+ 1 is square-free, we can write n+ 1 = p1p2 · · · pk, where p1, p2, . . . , pk are distinct

primes. The argument used in Case 1 does not apply in this case, since the expression∑
I

(−1)|I| v

(
n+ 1∏
i∈I pi

)
is a linear combination of v(1), v(2), . . . , v(n + 1) with a non-zero coefficient of v(1) and

v(1) is not a row of M(n).

Instead, we use elementary row operations to replace the final row of the matrix M(n),

which is v(n+ 1), with the vector∑
I 6={1,2,...,k}

(−1)|I| v

(
n+ 1∏
i∈I pi

)
,

which does not change the determinant. By the lemma above, this is simply the vector

v(1) = (1, 0, 0, . . . , 0), up to sign. Now calculate the determinant of this new matrix by

cofactor expansion along this row. It tells us that the determinant of M(n) is equal to its

(n, 1) minor, up to sign. However, the matrix obtained by deleting the nth row and 1st

column of M(n) is lower triangular, since d(a, b) = 0 for a < b. Moreover, it has 1s along

the main diagonal, since d(a, a) = 1. It follows that the determinant of M(n) is 1 or −1

and hence, M(n) is invertible.

Comments

In the solution above, we deduced that detM(n) = ±1 when n is square-free. The interested

reader may like to determine for which positive integers n we have detM(n) = 1.
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Problem A4

Let A1, A2, . . . , A2017 be the vertices of a regular polygon with 2017 sides.

Prove that there exists a point P in the plane of the polygon such that the vector

2017∑
k=1

k

#       »

PAk∥∥ #       »

PAk
∥∥5

is the zero vector.

(The notation ‖ #     »

XY ‖ represents the length of the vector
#     »

XY .)

Solution

Let P = (x, y) and A = (a, b), and consider the following two equations.

∂

∂x

1∥∥PA∥∥3 =
∂

∂x

1

[(x− a)2 + (y − b)2]3/2
=

3(a− x)

[(x− a)2 + (y − b)2]5/2
= 3

a− x∥∥PA∥∥5
∂

∂y

1∥∥PA∥∥3 =
∂

∂y

1

[(x− a)2 + (y − b)2]3/2
=

3(b− y)

[(x− a)2 + (y − b)2]5/2
= 3

b− y∥∥PA∥∥5
Since

#    »

PA = (a− x, b− y), the gradient of
1∥∥PA∥∥3 as a function of P is therefore 3

#    »

PA∥∥ #    »

PA
∥∥5 .

It follows that the function f : R2 \ {A1, A2, . . . , A2017} → R defined by

f(P ) =
2017∑
k=1

k∥∥ #       »

PAk
∥∥3

has a gradient ∇f that satisfies the equation

1

3
∇f(P ) =

2017∑
k=1

k

#       »

PAk∥∥ #       »

PAk
∥∥5 .

If P is a local minimum of f , then we have ∇f(P ) = 0. Hence, it suffices to show that there

exists a local minimum of f .

Without loss of generality, suppose that the regular polygon A1A2 · · ·A2017 is inscribed in the

unit circle centred at the origin. Let D denote the unit disk centred at the origin. Let us now

consider the global minimum of f over the set D\{A1, A2, . . . , A2017}. We claim that this global

minimum is attained in the interior of D, so it must also be a local minimum of f .

It now suffices to show that f(0, 0) < f(x, y), for every point (x, y) on the unit circle that is not

a vertex of the polygon. Indeed, we have

f(0, 0) =
2017∑
k=1

k

13
= 2 035 153.
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On the other hand, if (x, y) is a point on the unit circle that is not a vertex of the polygon,

then its distance to the nearest vertex of the polygon is less than the arc length 1
2 ×

2π
2017 = π

2017 .

Therefore, we have

f(x, y) =
2017∑
k=1

k∥∥ #       »

PAk
∥∥3 > 1

(π/2017)3
> 2 035 153 = f(0, 0).

This completes the proof.

Comments

The plot below left shows in blue (respectively, red) the locus of points for which the x-coordinate

(respectively, y-coordinate) of
2017∑
k=1

k

#       »

PAk∥∥ #       »

PAk
∥∥5

is equal to zero. The problem asks to show the existence of a point that lies in the intersection

of the blue locus and the red locus. One observes that there are many such points near the unit

circle and one such point closer to the origin.

The plot below right is analogous, but with all instances of the number 2017 in the original

problem replaced by the number 17.
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Problem B1

Maryam labels each vertex of a tetrahedron with the sum of the lengths of the three edges

meeting at that vertex. She then observes that the labels at the four vertices of the tetrahedron

are all equal.

For each vertex of the tetrahedron, prove that the lengths of the three edges meeting at that

vertex are the three side lengths of a triangle.

Solution

Label the edge lengths of the tetrahedron a, b, c, d, e, f , where a is opposite d, b is opposite e,

and c is opposite f .

a

b

c

d

e

f

These lengths must satisfy

a+ b+ c = b+ d+ f = c+ d+ e = a+ f + e.

The first equality implies that a+ c = d+ f , while the third implies that c+ d = a+ f . Adding

these two equations yields

a+ 2c+ d = a+ d+ 2f ⇒ c = f.

A similar argument can be used to also show that a = d and b = e.

It follows that the lengths of the three edges meeting at any vertex are a, b and c. Furthermore,

the three side lengths of any face of the tetrahedron are also a, b and c. So for each vertex of

the tetrahedron, the lengths of the three edges meeting at that vertex are the three side lengths

of a triangle.

Comments

The interested reader may like to consider the following problem: for which triples (a, b, c) does

there exist a tetrahedron with one pair of opposite edges of length a, one pair of opposite edges

of length b, and one pair of opposite edges of length c?
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Problem B2

Determine all pairs (p, q) of positive integers such that p and q are prime, and pq−1 + qp−1 is the

square of an integer.

Solution

If (p, q) = (2, 2), then pq−1 + qp−1 = 21 + 21 = 4, which is indeed the square of an integer.

We will prove that this is the only pair of positive integers that satisfies the conditions of the

problem.

If p and q are odd, then pq−1 and qp−1 are squares of odd integers, so we have

pq−1 ≡ qp−1 ≡ 1 (mod 4) ⇒ pq−1 + qp−1 ≡ 2 (mod 4).

Since the square of an integer must be congruent to 0 or 1 modulo 4, there are no pairs (p, q)

that satisfy the conditions of the problem when p and q are odd.

We have deduced that a pair (p, q) that satisfies the conditions of the problem must have p = 2

or q = 2. Without loss of generality, let us assume that q = 2, so that we are looking for a prime

p and a positive integer m such that p+ 2p−1 = m2. We have already dealt with the case p = 2,

so let us henceforth assume that p is odd. Then we may write this equation as(
m+ 2

1
2
(p−1)) (m− 2

1
2
(p−1)) = p.

Hence, we require p = m+ 2
1
2
(p−1) > 2

1
2
(p−1). However, we will prove below that the inequality

p > 2
1
2
(p−1) fails to be true for p ≥ 7. So it remains to check p = 3 and p = 5, but these two

cases do not yield solutions. Therefore, we conclude that (p, q) = (2, 2) is the only pair that

satisfies the conditions of the problem.

For completeness, we now prove that n ≤ 2
1
2
(n−1) for all n ≥ 7 via induction. For n = 7, one

can check the claim directly. Now if the claim is true for some n ≥ 7, then it is also true for

n+ 1 since

n < 2
1
2
(n−1) ⇒ n+ 1 <

n+ 1

n
× 2

1
2
(n−1) ≤ 8

7
× 2

1
2
(n−1) <

√
2× 2

1
2
(n−1) = 2

1
2
n.

This completes the induction argument.

Comments

One can consider the same problem, but relax the condition that p and q are prime. A computer

search with 1 ≤ p, q ≤ 100 only reveals solutions with p = q. Thus, we are left with the following

problem: if p and q are positive integers such that pq−1 + qp−1 is the square of an integer, is it

necessarily true that p = q?
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Problem B3

Each point in the plane with integer coordinates is coloured red or blue such that the following

two properties hold.

• For any two red points, the line segment joining them does not contain any blue points.

• For any two blue points that are distance 2 apart, the midpoint of the line segment joining

them is blue.

Prove that if three red points are the vertices of a triangle, then the interior of the triangle does

not contain any blue points.

Solution

Consider a colouring of the points in the plane with integer coordinates that satisfies the con-

ditions of the problem. Construct the graph whose vertices are the red points, with an edge

between two red points if and only if the distance between them is 1.

Lemma 1. The graph described above is connected.

Proof. Suppose for the sake of contradiction that the graph is not connected. Let A = (a1, a2)

and B = (b1, b2) be points from different connected components of the graph, such that the

length AB is minimal. Then it is certainly the case that AB > 1.

There cannot exist a red point C that is in the connected component containing A as well as

the connected component containing B. So by the minimality of AB, it is impossible for a red

point C to simultaneously satisfy the inequalities AC < AB and BC < AB.

The previous argument shows that the line segment AB does not contain any red points on its

interior. Hence, it follows that the line segment AB does not contain any lattice points on its

interior. In particular, we have deduced that A and B have different x-coordinates and different

y-coordinates. Without loss of generality, let B have larger x-coordinate than A as well as larger

y-coordinate than A. By the minimality of AB, the points (a1 + 1, a2) and (b1, b2 − 1) must be

blue. So by the second condition of the problem, the points (a1− 1, a2) and (b1, b2 + 1) must be

red. Therefore, none of the following four midpoints are blue.(
a1+b1

2 , a2+b22

) (
a1+b1+1

2 , a2+b22

) (
a1+b1

2 , a2+b2−12

) (
a1+b1+1

2 , a2+b2−12

)
One of these four points C is a lattice point, so it must be red. However, we now have a red point

C that simultaneously satisfies the inequalities AC < AB and BC < AB. Since this contradicts

our earlier deduction, our original assumption was incorrect, and the graph is connected.

Suppose for the sake of contradiction that there exists a triangle with red vertices A, B, C,

whose interior contains a blue point X. Then A, B, C are contained in some finite connected

set T of red points, whose convex hull contains a blue point. Let S be a connected set of red

points whose convex hull contains a blue point, such that |S| is minimal.
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Lemma 2. Let P be a point in S such that S\{P} is a connected set of red points. If A,B,C ∈ S
and the interior of triangle ABC contains a blue point, then P must be one of the three points

A, B, C.

Proof. We suppose the contrary in order to obtain a contradiction. Then S \ {P} is a con-

nected set of red points whose convex hull contains a blue point. However, this contradicts the

minimality of |S|.

We will use of the following two simple facts.

• Given a set of four points in the plane, there are four triangles whose vertices belong to

this set. Each of these triangles is contained in the union of the other three.

• Suppose thatM is a finite set of at least three points in the plane. The convex hull ofM
is the union of the (possibly degenerate) triangles whose vertices belong to M.

In particular, this means that there exist A,B,C ∈ S such that the interior of triangle ABC

contains a blue point.

Lemma 3. The set S takes the form of a single path R1, R2, . . . , Rn, in which Ri is connected

to Rj if and only if |i− j| = 1.

Proof. We suppose the contrary in order to obtain a contradiction. Then the set S contains

three distinct points P1, P2, P3 such that S \ {Pi} is connected for i = 1, 2, 3. This is impossible

if these are the only points in S, so there must be some other point X ∈ S. We know that there

is some triangle whose vertices are in S and whose interior contains a blue point. Hence, by

Lemma 2, this triangle must be P1P2P3. However, this triangle is contained in the union of the

triangles XP1P2, XP2P3 and XP3P1. So the interior of one of these three triangles contains a

blue point, which contradicts Lemma 2.

Now let B be a blue point contained in the convex hull of S that maximises the area of triangle

R1BRn. Without loss of generality, we may assume that R1B ≥ RnB. We know that there

is some triangle whose vertices are in S and whose interior contains B. So by Lemma 2, this

must be R1RjRn for some 1 < j < n. So B lies in the interior of one of the triangles R1R2Rn,

R1R2Rj or R2RjRn. So again by Lemma 2, B lies in the interior of triangle R1R2Rn.

Now let X be the point such that B is the midpoint of XRn. Since B and Rn have integer

coordinates, X also has integer coordinates. Since the line segment XRn contains a blue point,

X must be blue. The triangle XR1Rn has twice the area of triangle BR1Rn, so the maximality

of the area of triangle BR1Rn implies that the point X lies outside the convex hull of S.

In particular, X lies outside triangle R1R2Rn, so R1XR2Rn is a convex quadrilateral. Since

R1B ≥ RnB, the midpoint M of R1Rn must satisfy ∠RnMB ≤ 90◦. It follows that ∠RnR1X ≤
90◦, so ∠RnR1R2 < 90◦ and ∠R2R1X < 90◦. Since R1R2 = 1 and the four points R1, R2,

Rn, X have integer coordinates, R1XR2 ≤ 45◦ and ∠R1RnR2 ≤ 45◦. These equalities force

∠XR2Rn > 180◦, which is impossible since R1XR2Rn is a convex quadrilateral, so we have

reached the desired contradiction.
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Problem B4

The following problem is open in the sense that no solution is currently known. Progress on the

problem may be awarded points. An example of progress on the problem is a non-trivial bound

on the sequence defined below.

For each integer n ≥ 2, consider a regular polygon with 2n sides, all of length 1. Let C(n)

denote the number of ways to tile this polygon using quadrilaterals whose sides all have length

1.

Determine the limit inferior and the limit superior of the sequence defined by

1

n2
log2C(n).

Comments

The first terms of the sequence C(1), C(2), C(3), . . . are

1, 1, 2, 8, 62, 908, 24698, 1232944, 112018190, 18410581880, 5449192389984, 2894710651370536,

2752596959306389652, 4675651520558571537540, 14163808995580022218786390, . . . .

This is sequence A006245 in The On-Line Encyclopedia of Integer Sequences. It appears that

no further terms are known.

The problem of studying this sequence was first proposed by Donald E. Knuth in his book Axioms

and Hulls, published in 1992. The number C(n) counts various other objects of mathematical

interest, such as

• commutation classes of the longest element in the symmetric group Sn;

• heaps for the longest element in the symmetric group Sn;

• primitive sorting networks on n elements;

• uniform oriented matroids of rank three on n elements; and

• arrangements of n pseudolines.

For further information on these problems and their equivalence, we point the interested reader

to the paper On the number of commutation classes of the longest element in the symmetric

group by Hugh Denoncourt, Dana C. Ernst and Dustin Story, as well as to the references therein.

Perhaps the best bounds for C(n) were obtained by Stefan Felsner and Pavel Valtr in their paper

Coding and counting arrangements of pseudolines. They prove that

20.1887n
2 ≤ C(n) ≤ 20.6571n

2
,

for sufficiently large n.
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