
2023 SOLUTIONS

Problem A1

For 0 < q < 1, the q-Fibonacci spiral is constructed as described below. An arc of radius
1 is first drawn inside a 1× 1 square. A second arc is then drawn in a q × q square, then
a third in a q2 × q2 square, and so on ad infinitum, to create a continuous curve. The
example on the left shows the case q = 1

2
, while the example on the right shows q =

√
5−1
2

.

q = 1
2 q =

√
5−1
2

Prove that there exists a circle centred at the centre of the initial 1× 1 square such that
for each 0 < q < 1, the limiting endpoint of the q-Fibonacci spiral lies on this circle.

Solution 1

Let (0, 0) be the coordinates of the bottom left corner of the 1 × 1 square and let (x, y)
be the coordinates of the other end of the spiral. The values of x and y can be found by
tracking the positive and negative contributions of the radii for each successive arc. These
radii form a geometric sequence with common ratio equal to the scale factor q. Hence we
have

x = 1 + q − q2 − q3 + q4 + q5 − q6 − q7 + · · ·
= (1 + q)

(
1− q2 + q4 − q6 + · · ·

)
=

1 + q

1 + q2

and

y = 1− q − q2 + q3 + q4 − q5 − q6 + q7 + · · ·
= (1− q)

(
1− q2 + q4 − q6 + · · ·

)
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=
1− q
1 + q2

,

twice using the formula for an infinite geometric series 1 + r + r2 + r3 + · · · = 1
1−r .

The centre of the initial square is at (1
2
, 1
2
). It remains to show that the distance from the

point ( 1+q
1+q2

, 1−q
1+q2

) to (1
2
, 1
2
) is independent of q. We compute this distance is√(

1 + q

1 + q2
− 1

2

)2

+

(
1− q
1 + q2

− 1

2

)2

=

√
2

2
.

Solution 2

We work in the complex plane. Let z0 be the start of the spiral, and for n ≥ 1, let zn be
the point where the spiral exits the n-th square.

The consecutive diagonals zn+1 − zn and zn−1 − zn are at right angles and their lengths
differ by a multiple of q. So we obtain the equation

zn+1 − zn = iq(zn−1 − zn)

for all n ≥ 1.

This is a linear recurrence relation with characteristic equation

λ2 − λ = iq(1− λ)

which has roots λ = 1,−iq.

Therefore the solution is of the form

zn = A+B(−iq)n

for some A,B ∈ C. From z0 = A+B and z1 = A− iqB we obtain

B =
z0 − z1
1 + iq

.

The centre of the initial square is

z0 + z1
2

= A+B
1− iq

2

and the limiting endpoint of the q-Fibonnaci spiral is

lim
n→∞

zn = lim
n→∞

(A+B(−iq)n) = A.

The distance between these two points is∣∣∣∣(A+B
1− iq

2

)
− A

∣∣∣∣ = |B|
(

1− iq
2

)
=
|z0 − z1|

2

|1− iq|
|1 + iq|

.

Since q ∈ R, |1− iq| = |1+ iq| and therefore this distance is independent of q, as required.
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Solution 3

Notice that the full spiral can be scaled by a factor of q and rotated 90◦ clockwise to
create the same spiral without the first 1×1 square. The centre of this spiral similarity is
the point that remains the same under the transformation, namely the limiting endpoint
of the spiral, labelled P below.

Since the bottom-left corner of the 1 × 1 square (A) is moved to the top-right corner
(A′) under this transformation, the angle APA′ must be 90◦. So P must lie on the
circumference of the circle with diameter AA′.

A

A′

P
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Problem A2

Let n be a positive integer and let f1(x), . . . , fn(x) be affine functions from R to R such
that, amongst the n graphs of these functions, no two are parallel and no three are
concurrent. Let S be the set of all convex functions g(x) from R to R such that for each
x ∈ R, there exists i such that g(x) = fi(x).

Determine the largest and smallest possible values of |S| in terms of n.

(A function f(x) is affine if it is of the form f(x) = ax+ b for some a, b ∈ R. A function
g(x) is convex if g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y) for all x, y ∈ R and 0 ≤ λ ≤ 1.)

Solution

We will prove that largest possible value of |S| is 2n − 1 and the smallest possible value

is n(n+1)
2

.

Suppose g ∈ S. For i = 1, 2, . . . , n, let Xi = {x ∈ R : g(x) = fi(x)}. We will first note
the following.

Claim: If |Xi| ≥ 3, then Xi is an interval.

This claim follows since if a < b < c are such that (a, g(a)), (b, g(b)), and (c, g(c))
are collinear, then since g is convex, g is linear on [a, b]. Apply this observation where
a, b, c ∈ Xi.

Let T = {i : |Xi| ≥ 3}. We will prove that

g(x) = max
i∈T

fi(x). (1)

We first note that the claim above, along with the fact that g(x) is convex, implies that
g(x) ≥ fi(x) for all i ∈ T , and therefore g(x) ≥ maxi∈T fi(x).

Suppose that there exists y ∈ R with g(y) 6= maxi∈T fi(y). Then g(y) > fi(y) for all
i ∈ T . Since convex functions are continuous, there exists an open neighbourhood U of y
such that for all z ∈ U , g(z) > fi(z) for all z ∈ U . For each z ∈ U , there must exist j with
fj(z) = g(z). Since the set of possible j is finite and U is infinite, there exists j such that
fj(z) = g(z) for at least three z ∈ U . But therefore j ∈ T which implies g(z) > fj(z), a
contradiction. This completes the proof of (1).

Since T is nonempty, there are at most 2n − 1 possible subsets T of {1, 2, . . . , n}. This
upper bound can be achieved, for example we can take the graphs of f1, . . . , fn to be n
distinct tangents of the graph y = x2. In this case every subset T gives a distinct function
because for every i, there exists some x such that fi(x) = maxj fj(x).

For the lower bound, since no two lines are parallel, all functions fi with 1 ≤ i ≤ n and
max(fi, fj) with 1 ≤ i < j ≤ n are pairwise distinct elements of S. So there are at least

n + n(n−1)
2

= n(n+1)
2

such functions. To achieve this lower bound, we can take n distinct
tangents of the graph y = −x2. If we order the functions in increasing gradients, then it
is easy to show that fj < max(fi, fk) for i < j < k, so there are no other elements of S.
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Problem A3

For each positive integer n, let f(n) denote the smallest possible value of

|A1 ∪ A2 ∪ · · · ∪ An|,

where A1, A2, . . . , An are sets such that Ai 6⊆ Aj and |Ai| 6= |Aj| whenever i 6= j.

Determine f(n) for each positive integer n.

Solution

We will prove that

f(1) = 0, f(2) = 3, and f(n) = n+ 2 for n ≥ 3.

It is clear that f(1) = 0 by taking A1 = {}.

We obtain f(2) ≤ 3 by taking A1 = {1} and A2 = {2, 3}. Since in order to satisfy the
subset condition, neither set can be empty and a singleton set must contain a unique
element, it is clear that f(2) ≥ 1 + 2 = 3, so we conclude that f(2) = 3.

Next, we prove that f(n) ≥ n + 2 for n ≥ 3. Suppose that A1, A2, . . . , An satisfy the
conditions of the problem and are listed in increasing order of cardinality. We first observe
that for all 1 ≤ k ≤ n− 1 we must have |Ak+1| ≥ |Ak|+ 1. We also observe in particular
that A1 6⊆ An, A2 6⊆ An, and A1 6⊆ A2.

We find that there is never a solution such that |An| < n, since this would require through
our first observation that |A1| < 1. This is impossible, since A1 6⊆ An.

If |An| = n, then we observe that A1 must contain a single element which appears in
neither A2 nor An, and A2 must contain a pair of elements such that at least one does
not appear in An. Therefore,

|A1 ∪ A2 ∪ · · · ∪ An| ≥ |A1 ∪ A2 ∪ An| ≥ |An|+ 2 = n+ 2.

On the other hand, if |An| > n, then we observe that there must be at least one element
in any arbitrarily chosen set Ak for 1 ≤ k < n which is not in An. We select k = 1 without
loss of generality, and find

|A1 ∪ A2 ∪ · · · ∪ An| ≥ |A1 ∪ An| ≥ |An|+ 2 = n+ 2.

In either case, we find that f(n) ≥ n+ 2.

It remains to show that f(n) ≤ n+ 2 for n ≥ 3, which we do using an inductive construc-
tion. The base cases are given by n = 3 and n = 4 below, and it is easy to check that
they do indeed satisfy the conditions of the problem.

n = 3 : A1 = {1}, A2 = {2, 3}, A3 = {3, 4, 5}
n = 4 : A1 = {1}, A2 = {2, 3}, A3 = {2, 4, 5}, A4 = {3, 4, 5, 6}
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Now suppose that for some n ≥ 3, sets A1, A2, . . . , An satisfy the following conditions:

• Ai 6⊆ Aj for i 6= j;

• |Ai| 6= |Aj| for i 6= j;

• |Ak| = k for 1 ≤ k ≤ n; and

• |A1 ∪ A2 ∪ · · · ∪ An| = n+ 2.

If these more restrictive conditions are satisfied, we necessarily have f(n) ≤ n+ 2.

Write A = A1 ∪ A2 ∪ · · · ∪ An and let a and b be two elements that do not belong to A.
Consider the following n+ 2 sets:

B1 = {a}
Bk+1 = Ak ∪ {b}, for k = 1, 2, . . . , n

Bn+2 = A

We now show that the new sets B1, B2, · · · , Bn+2 satisfy all four of the conditions we
require in our base case. First, we prove the subset condition:

• By the inductive assumption, we know Bi is not a subset of Bj for 2 ≤ i < j ≤ n+1.

• By construction, B1 is not a subset of Bj for 2 ≤ j ≤ n+ 2.

• By construction, Bi is not a subset of Bn+2 for 1 ≤ i ≤ n+ 1.

It follows that Bi is not a subset of Bj for any i 6= j.

Next, we prove the conditions that |Bi| 6= |Bj| for i 6= j and, more generally, that |Bk| = k.
We have this by construction for k = 1 and by the inductive hypothesis for 2 ≤ k ≤ n+2,
so both are satisfied.

Lastly, we observe that |B1 ∪B2 ∪ · · · ∪Bn+2| = n+ 4, so the final property is satisfied as
well.

Combined with the prior base cases for f(3) and f(4), this construction shows by induction
that f(n) ≤ n + 2 for all n ≥ 3. Since we already know from our previous work that
f(n) ≥ n+ 2, we conclude that f(n) = n+ 2 for n ≥ 3.
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Problem A4

Let x0, x1, x2, . . . be a sequence of positive real numbers such that for all n ≥ 0,

xn+1 =
(n2 + 1)x2n
x3n + n2

.

For which values of x0 is this sequence bounded?

Solution

First consider the derivative of the function fn(x) = (n2+1)x2n
x3n+n

2 .

f ′n(x) =
2(n2 + 1)x(x3 + n2)− (n2 + 1)x2(3x2)

(x3 + n2)2

=
(n2 + 1)x

(x3 + n2)2
×
(
2n2 − x3

)
.

So there is a unique critical point at x =
3
√

2n2 and so fn(x) is increasing on the interval
(0,

3
√

2n2) and decreasing on the interval (
3
√

2n2,∞).

We now let x0 = λ and find the following first few terms.

x0 = λ

x1 =
(02 + 1)λ2

λ3 + 02
= λ−1

x2 =
(12 + 1)x21
x31 + 12

=
2λ−2

λ−3 + 1
=

2λ

1 + λ3

Observation One: For any n ≥ 2, if xn ≤ 1 then xn+1 ≤ 1.
Proof: Since fn(x) is increasing on the interval 0 < x ≤ 1, we have fn(xn) ≤ fn(1).
Therefore

xn+1 = fn(xn) ≤ fn(1) =
(n2 + 1)12

13 + n2
= 1.

Observation Two: For any n ≥ 2, if 1 < xn < n2 then 1 < xn+1 < (n+ 1)2.
Proof: Since fn(x) is increasing on the interval 1 < x <

3
√

2n2 and decreasing on the
interval (

3
√

2n2, n), we simply need to verify that

• fn(1) = (n2+1)12

13+n2 = 1, and

• fn(n2) = (n2+1)n4

n6+n2 = n4+n2

n4+1
≥ 1, and

• fn(
3
√

2n2) = (n2+1)(
3√
2n2)2

2n2+n2 =
3√4

3n2/3 (n2 + 1) < (n+ 1)2.

The last statement follows from the fact that
3√4

3n2/3 < 1 and n2 + 1 < (n+ 1)2.

With these two observations out of the way, we turn our attention to the original problem.
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If x2 ≤ 1, then the sequence is bounded by Observation One. So let’s assume that x2 > 1.
Note that x2 = 2λ

1+λ3
< 4 for all positive λ, so by Observation Two we can assume that

1 < xn < n2 for all n ≥ 2. Now for the sake of contradiction assume that there exists a
constant b such that

1 < xn < b

for all n ≥ 2. Then:

xn+1 − xn =
(n2 + 1)x2n
x3n + n2

− xn

=
−x4n + (n2 + 1)x2n − n2xn

x3n + n2

=
xn(xn − 1)(n2 − x2n − xn)

x3n + n2

≥ xn(xn − 1)(n2 − b2 − b)
n2 + b3

.

For all n greater than some large enough value N , we have (n2 − 2b2 − b) > n2

2
and

(n2 + b3) < 2n2. So eventually we get

xn+1 − xn ≥
xn(xn − 1)(n2 − b2 − b)

n2 + b3
>
xn(xn − 1)n

2

2

2n2
=
xn(xn − 1)

4
> 0,

meaning the sequence (xn) is increasing for n ≥ N . Letting a = xN > 1, we can conclude
that for all n ≥ N ,

xn+1 − xn ≥
a(a− 1)

4
.

Therefore the sequence is eventually always greater than an arithmetic progression with
common difference d = a(a−1)

4
, which contradicts the assumption that b was an upper

bound.

So the sequence is unbounded if and only if x2 > 1.

Solving the inequality x2 = 2x0
x30+1

> 1 yields the final answer that the sequence is bounded

if and only if 0 < x0 ≤
√
5−1
2

or x0 ≥ 1.
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Problem B1

Find the smallest positive real number r with the following property: For every choice of
2023 unit vectors v1,v2, . . . ,v2023 ∈ R2, a point p can be found in the plane such that for
each subset S of {1, 2, . . . , 2023}, the sum∑

i∈S

vi

lies inside the disc {x ∈ R2 : ||x− p|| ≤ r}.

Solution

We will show that the answer is r = 2023
2

.

Let p = 1
2

2023∑
i=1

vi. If S ⊆ {1, 2, . . . , 2023} then

∣∣∣∣∣∣∣∣(∑
i∈S

vi)− p

∣∣∣∣∣∣∣∣ =
1

2

∣∣∣∣∣∣∣∣∑
i∈S

vi −
∑
i/∈S

vi

∣∣∣∣∣∣∣∣ ≤ 1

2

(∑
i∈S

||vi||+
∑
i/∈S

|| − vi||

)
=

1

2
× 2023

by the triangle inequality. Therefore the sum
∑

i∈S vi lies within the disc centred at p
with radius 2023

2
.

On the other hand, if v1 = v2 = · · · = v2023 then the sums corresponding to S = ∅ and
S = {1, 2, . . . , 2023} are distance 2023 apart, so cannot both lie in any disc of radius less
than 2023

2
. Therefore 2023

2
is the optimal value of r.
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Problem B2

There are 256 players in a tennis tournament who are ranked from 1 to 256, with 1
corresponding to the highest rank and 256 corresponding to the lowest rank. When two
players play a match in the tournament, the player whose rank is higher wins the match
with probability 3

5
.

In each round of the tournament, the player with the highest rank plays against the player
with the second highest rank, the player with the third highest rank plays against the
player with the fourth highest rank, and so on. At the end of the round, the players who
win proceed to the next round and the players who lose exit the tournament. After eight
rounds, there is one player remaining in the tournament and they are declared the winner.

Determine the expected value of the rank of the winner.

Solution 1

More generally, suppose that there are 2n players, so that the tournament lasts for n
rounds. Furthermore, suppose that the person whose rank is higher wins the match with
probability p. Let W be the random variable corresponding to the rank of the winner.
We will prove by induction that for every positive integer n, the expected value is

E[W ] = 2n − 2np+ p.

In the case n = 1, the tournament consists of only one match and we have

E[W ] = 1× P (X=1) + 2× P (X=2) = 1× p+ 2× (1− p) = 2− p.

Therefore, the claim is true for n = 1.

Now assume that the claim is true for some positive integer n and consider a tournament
with 2n+1 players. One can consider the top half of the draw as a tournament with 2n

players that produces the finalist with the higher rank and the bottom half of the draw
as a tournament with 2n players that produces the finalist with the lower rank. Let W+

be the random variable corresponding to the rank of the finalist from the top half of the
draw and let W− be the random variable corresponding to the rank of the finalist from the
bottom half of the draw. Then we have E[W−] = E[W+] + 2n and E[W+] = 2n − 2np+ p
by the induction hypothesis. Therefore,

E[W ] = p× E[W+] + (1− p)× E[W−]

= p× (2n − 2np+ p) + (1− p)× (2n − 2np+ p+ 2n)

= 2n − 2np+ p+ 2n − 2np

= 2n+1 − 2n+1p+ p.

Thus, the claim is true for a tournament with 2n+1 players. By induction, we have proven
the claim for a tournament with 2n players for every positive integer n.

Finally, the statement of the problem uses n = 8 and p = 3
5
, in which case the expected

value of the rank of the winner is

28 − 28 × 3

5
+

3

5
= 103.
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Solution 2

More generally, suppose that there are 2n players, so that the tournament lasts for n
rounds. Furthermore, suppose that the person whose rank is higher wins the match with
probability p. Let W be the random variable corresponding to the rank of the winner.
We will prove that

E[W ] = 2n − 2np+ p.

Consider the player whose rank is k and the probability with which they win the tourna-
ment. Express the integer k − 1 in binary, but pad it out with preceding 0s to create a
binary string of length n. Observe that in round r, this player plays someone with higher
rank if the rth last binary digit of the string is 1; similarly, they play someone with lower
rank if the rth last binary digit of the string is 0.

So the probability that the player whose rank is k wins the tournament is equal to
pn−b(k−1)(1 − p)b(k−1), where b(k − 1) represents the number of times that a 1 appears
in the binary representation of k − 1. The quantity that we would like to calculate is

E[W ] =
2n∑
k=1

k × pn−b(k−1)(1− p)b(k−1)

=
2n−1∑
k=0

(k + 1)× pn−b(k)(1− p)b(k)

=
n∑
b=0

∑
k:b(k)=b

(k + 1)pn−b(1− p)b

=
n∑
b=0

pn−b(1− p)b
∑

k:b(k)=b

(k + 1).

The inner summation is simply the sum of all the non-negative integers whose binary
representation contains at most n digits, precisely k of which are 1. There are exactly

(
n
k

)
such integers and in total, there are k

(
n
k

)
times that 1 appears as a binary digit amongst

these integers. So by symmetry, 1 appears as the mth binary digit from the right k
n

(
n
k

)
times for each m = 1, 2, . . . , n. It then follows that we have∑

k:b(k)=b

b =
b

n

(
n

b

)
× (20 + 21 + 22 + · · ·+ 2n−1) =

b

n

(
n

b

)
× (2n − 1).

Substituting this into the expression above, we obtain that the expected value of the
winner’s rank is

n∑
b=0

pn−b(1− p)b b
n

(
n

b

)
× (2n − 1) + 1

=
2n − 1

n

n∑
b=0

pn−b(1− p)bb
(
n

b

)
+ 1

=
2n − 1

n

[
x
∂

∂x

n∑
b=0

yn−bxb
(
n

b

)]
x=1−p,y=p

+ 1
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=
2n − 1

n

[
x
∂

∂x
(x+ y)n

]
x=1−p,y=p

+ 1

=
2n − 1

n

[
nx(x+ y)n−1

]
x=1−p,y=p + 1

= (2n − 1)(1− p) + 1

= 2n − 2np+ p.

Finally, the statement of the problem uses n = 8 and p = 3
5
, in which case the expected

value of the rank of the winner is

28 − 28 × 3

5
+

3

5
= 103.
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Problem B3

Let n be a positive integer. Let A, B and C be three n-dimensional subspaces of R2n

with the property that A ∩ B = B ∩ C = C ∩ A = {0}. Prove that there exist bases
{a1, a2, . . . , an} of A, {b1,b2, . . . ,bn} of B and {c1, c2, . . . , cn} of C with the property
that for each i ∈ {1, 2, . . . , n}, the vectors ai, bi and ci are linearly dependent.

Solution 1

Let {c1, c2, . . . , cn} be a basis of C. Since A ∩ B = {0} and dimA + dimB = dimR2n,
we have A + B = R2n. Therefore for each i ∈ {1, 2, . . . , n}, there exists ai ∈ A and
bi ∈ B with ai + bi = ci. It suffices to show that {a1, a2, . . . , an} is a basis of A and
{b1,b2, . . . ,bn} is a basis of B.

Since A is n-dimensional, to show {a1, a2, . . . , an} is a basis of A it suffices to show that
{a1, a2, . . . , an} is a linearly independent set. Suppose λ1, λ2, . . . , λn ∈ R are such that∑n

i=1 λiai = 0. Then
n∑
i=1

λibi =
n∑
i=1

λici.

This vector lies in both B and C. Since B ∩ C = {0}, we obtain
∑n

i=1 λici = 0. Since
{c1, c2, . . . , cn} is a basis of C, it is a linearly independent set, so λi = 0 for all i, as
required.

This shows that {a1, a2, . . . , an} is a basis of A. Similarly {b1,b2, . . . ,bn} is a basis of
B. The equation ai + bi = ci shows that ai, bi, and ci are linearly independent for all i.
This completes the proof.

Solution 2

Let ϕ : A ⊕ B ⊕ C → R2n be the linear transformation ϕ(a,b, c) = a + b + c. Then
dim(kerϕ) ≥ dim(A ⊕ B ⊕ C) − dim(R2n) = n. Let {(ai,bi, ci)}1≤i≤n be n linearly
independent vectors in kerϕ. Note that ai + bi + ci = 0, so the vectors ai, bi, and ci are
linearly dependent for all i.

We will now show that the vectors a1, . . . , an are linearly independent. Suppose that there
exist scalars λi such that

λ1a1 + · · ·+ λnan = 0.

Then
(λ1b1 + · · ·+ λnbn) = −(λ1c1 + · · ·+ λncn).

Since B ∩ C = {0}, this implies that λ1b1 + · · · + λnbn = 0 and λ1c1 + · · · + λncn = 0.
Therefore

λ1(a1,b1, c1) + λ2(a2,b2, c2) + · · ·+ λn(an,bn, cn) = 0.

Since the vectors (ai,bi, ci) are linearly independent, we deduce λ1 = λ2 = · · · = λn = 0,
which proves that {a1, . . . , an} is a linearly independent set, and hence is a basis of A
since A is n-dimensional.

Similarly {b1, . . . ,bn} is a basis of B and {c1, . . . , cn} is a basis of C, completing the
proof.
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Problem B4

(a) Let n be a positive integer that is not a perfect square. Find all pairs (a, b) of
positive integers for which there exists a positive real number r, such that

ra +
√
n and rb +

√
n

are both rational numbers.

(b) Let n be a positive integer that is not a perfect square. Find all pairs (a, b) of
positive integers for which there exists a real number r, such that

ra +
√
n and rb +

√
n

are both rational numbers.

Solution to part (a)

We will show that for every value of n, the only solution is a = b. When a = b, there is
indeed a solution, by taking r = (n−

√
n)

1
a .

Let p = ra +
√
n and q = rb +

√
n. Then

(p−
√
n)b = (q −

√
n)a. (2)

Since
√
n is irrational, by considering conjugates we also get that

(p+
√
n)b = (q +

√
n)a. (3)

If p = q then ra = rb and hence either a = b or r = 1, and r = 1 is not possible since
√
n

is irrational.

Now suppose without loss of generality that p < q. Then from (3), b > a. Consider the
function

f(x) = b log(p+ x)− a log(q + x).

Its derivative is

f ′(x) =
b

p+ x
− a

q + x

and for x > −p, we have f ′(x) > 0 since p < q and b > a.

Note that ra = p −
√
n so −

√
n > −p. Therefore f is an increasing function on the

interval [−
√
n,
√
n]. But equations (2) and (3) are equivalent to f(−

√
n) = 0 = f(

√
n),

a contradiction.

Hence a = b is the only solution.
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Known partial results for part (b)

We will show that for every n there is the additional solution {a, b} = {1, 2}, and that
any other solution must have a, b > 1 with a and b of opposite parity. The solution with
(a, b) = (1, 2) is

r =
1

2
−
√
n

which is easily checked to be a solution.

If a and b are both even, then replacing r by |r|, we can assume without loss of generality
that r is positive and there is nothing new to be done.

Now suppose a and b are both odd. Without loss of generality assume a ≤ b. We have

(p−
√
n)b/a = q −

√
n.

As before, we have (p+
√
n)b = (q +

√
n)a and taking the a-th root gives

(p+
√
n)b/a = q +

√
n.

If p >
√
n then there are no solutions by the argument in part (a). If p <

√
n then

replacing p by −p also yields no solution by the argument in part (a). So we can suppose
that −

√
n < p <

√
n.

Let Y =
√
n− p and Z =

√
n+ p. Then Y and Z are positive. We obtain Y + Z = 2

√
n

and Y b/a + Zb/a = 2
√
n. By the power mean inequality (or since x 7→ xb/a is convex),(

Y b/a + Zb/a

2

)a/b
≥ Y + Z

2
,

which yields
na/b ≥ n.

Since n is not a perfect square, n > 1. Therefore a/b ≥ 1 but since we assumed a ≤ b, we
get a = b and so there are no additional solutions.

We now give a complete solution to the a = 1 case. We will show that the only solutions
when a = 1 are b = 1 and b = 2, for which solutions are known and discussed above. The
case where b is odd has been dealt with above, so assume b = 2m with m ≥ 2.

The equation we have to solve is

(p+
√
n)2m = q +

√
n.

Since 1 and
√
n are linearly independent over Q, we get

m∑
k=1

(
2m

2k − 1

)
p2k−1nm−k = 1. (4)

Let v2 denote the 2-adic valuation, this is the function v2 : Q× → Z defined by v2(2
a b
c
) = a,

where a, b, c ∈ Z with b, c odd. For all k = 1, 2, . . . ,m,(
2m

2k − 1

)
=

2m

2m− 2k + 1

(
2m− 1

2k − 1

)
.
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Since 2m− 2k + 1 is odd, we get

v2
((

2m
2k−1

))
= v2(2m) + v2

((
2m−1
2k−1

))
> 0 (5)

If v2(p) ≥ 0 then (5) implies the left hand side of (4) has positive 2-adic valuation, while
the right hand side of (4) has zero 2-adic valuation, a contradiction.

If v2(p) < 0, then (5) implies that

v2(2mp
2m−1) < v2

((
2m
2k−1

)
p2k−1nm−k

)
for k = 1, 2, . . . ,m− 1. Therefore the left hand side of (4) has 2-adic valuation equal to

v2(2m) + (2m− 1)v2(p).

As v2(p) ≤ −1 and m ≥ 2, this quantity is negative. The right hand side of (4) has zero
2-adic valuation so this is also a contradiction.

Therefore there are no solutions with a = 1 and b > 2.
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Problem C1

There are 2023 cups numbered from 1 through 2023. Red, green, and blue balls are placed
in the cups according to the following rules.

• If cups m and n both contain a red ball, then m− n is a multiple of 2.

• If cups m and n both contain a green ball, then m− n is a multiple of 3.

• If cups m and n both contain a blue ball, then m− n is a multiple of 5.

What is the smallest possible number of empty cups?

Solution

We may assume that there exists at least one ball of each other colour since otherwise
there will be more empty cups.

The conditions imply that there exist integers a, b, and c such that:

• Cup n contains a red ball if and only if n ≡ a (mod 2).

• Cup n contains a green ball if and only if n ≡ b (mod 3).

• Cup n contains a blue ball if and only if n ≡ c (mod 5).

By the Chinese remainder theorem, we conclude that there must exist an integer x such
that Cup n is empty if and only if gcd(n− x, 30) = 1.

Since the number of positive integers below 30 that are coprime with 30 is ϕ(30) = 8,
there must be exactly 8 cups in any sequence of 30 cups that satisfy this condition.

Note that 2023 = 67× 30 + 13. The 8 residue classes coprime to 30 are

1, 7, 11, 13, 17, 19, 23, 29.

There is a sequence of 13 consecutive residue classes (starting at 24 and finishing at 6)
that contains exactly two members of this set. It can be easily checked that there is no
sequence of 13 consecutive residue classes containing fewer than two members of this set.

Therefore the smallest possible number of empty cups amongst 13 consecutive cups is 2,
and hence the smallest possible number of empty cups is

67× 8 + 2 = 538.
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Problem C2

For an integer n ≥ 2, consider the line segment connecting the point (0, k) to the point
(n− k, 0) for k = 0, 1, 2, . . . , n. The union of these n+ 1 line segments divides the plane
into one unbounded region and a number of bounded regions, each of which is a triangle
or a quadrilateral. Each of these bounded regions can be coloured blue or red in a unique
way such that regions sharing an edge have different colours and the region with vertex
(0, 0) is coloured blue.

Determine all values of n for which the total area that is coloured blue is equal to the
total area that is coloured red.

Solution

For k = 0, 1, 2, . . . , n, let `k denote the line connecting the point (0, k) to the point
(n− k, 0). For 0 ≤ i ≤ j ≤ n, define the point

Pij =

(
(n− i)(n− j)

n
,
ij

n

)
.

One can check that for i < j, the point Pij is the point where the lines `i and `j intersect.
Furthermore, observe that for j = 0, 1, 2, . . . , n, the n+ 1 points

P0j, P1j, P2j, . . . , Pj−1,j, Pjj, Pj,j+1, . . . , Pjn

are equally spaced along `j in order, with P0j and Pjn forming the endpoints.

We will prove that the area that is coloured blue is equal to the area that is coloured red
if and only if n is odd.

Let n be odd and consider the part of the diagram below the line y = x. By drawing the
blue segments shown below in the case of n = 7, we split this part of the diagram into
triangles, each of which pairs with an adjacent triangle with the same area but different
colour. The fact that the areas are equal follows from the fact above concerning the
equidistant spacing of the points along each line. It follows that the area that is coloured
blue is equal to the area that is coloured red.
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Now let n be even and consider the part of the diagram below the line y = x. By drawing
the blue segments shown below in the case of n = 6, we split this part of the diagram
into triangles, most of which which pair with an adjacent triangle with the same area but
different colour. The fact that the areas are equal follows from the fact above concerning
the equidistant spacing of the points along each line. However, in this case, the “edge”
triangles are blue and are twice the area of the triangle that they pair with. It follows
that the area that is coloured blue is greater than the area that is coloured red.
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Problem C3

Determine the maximum real number C such that

n∑
i=1

xi
xi−1

≥ n+ C,

for all positive integers n and all sequences of positive real numbers x0, x1, . . . , xn such
that x0 = 1 and xn = 2.

Solution 1

We will show that C = log(2) (where log refers to the natural logarithm).

By the AM-GM inequality we can compute:

x1
x0

+ x2
x1

+ x3
x2

+ · · ·+ xn
xn−1

n
≥ n

√
x1
x0
× x2
x1
× x3
x2
× · · · × xn

xn−1
=

n
√

2,

with equality if and only if there is some constant r = xi
xi−1

for all i. So equality can be

achiveved by xi = 2i/n (r = n
√

2) for all i = 0, 1, 2, 3, . . . , n. Define

Sn = n
(

n
√

2− 1
)

and thus it suffices to:

• show Sn is a decreasing sequence, and

• determine C = limn→∞ Sn.

Letting t = 1
n
, we see

n(
n
√

2− 1) = 1
t
(2t − 1)

= 1
t
(et log 2 − 1)

= log 2 +
(log 2)2t

2
+

(log 2)3t2

6
+

(log 2)4t3

24
+ · · ·

using the power series formula for the exponential function.

As this is a sum of decreasing functions of t, it is clear that we have a decreasing function
of t and its limit is log 2. This completes the proof, and shows that C = log 2.
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Solution 2

Let f(x) = 1
x
. First let us consider the case when 1 = x0 < x1 < x2 < · · · < xn = 2.

Since f(x) is decreasing on the interval [1, 2], the upper Riemann sum for f(x) for this
partition of [1, 2] is

n∑
i=1

(xi − xi−1) f (xi−1) .

This upper sum is greater than the integral so we get:

n∑
i=1

(xi − xi−1)
1

xi−1
≥
∫ 2

1

1

x
dx = log(2).

When we no longer have the increasing property 1 = x0 < x1 < x2 < · · · < xn = 2, we
can still consider the sum

n∑
i=1

(xi − xi−1) f (xi−1) .

Individual terms in this sum may now be negative, we can think of it as a signed sum of
areas of the rectangles with vertices (xi−1, 0), (xi, 0), (xi, f(xi)), (xi−1, f(xi−1)).

Any point in the plane appears in at least as many rectangles with a positive sign than
with a negative sign. Each point below the curve y = f(x) (and with 1 < x < 2, y ≥ 0) is
in strictly more rectangles with a positive sign than with a netative sign. So by conidering
areas we obtain the same inequality

n∑
i=1

(xi − xi−1)
1

xi−1
≥
∫ 2

1

1

x
dx = log(2).

Rearranging gives us
n∑
i=1

(
xi
xi−1

− 1

)
≥ log(2).

n∑
i=1

xi
xi−1

≥ n+ log(2).

So C ≥ log(2).

Now for any given ε > 0 we need to construct a sequence such that

n∑
i=1

xi
xi−1

< n+ log(2) + ε.

Since the Riemann integral is the limit of its upper sums, we can find increasing sequences
1 = x0 < x1 < x2 < . . . < xn = 2 that satisfy the above inequality.
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Problem C4

Let k be a positive integer. Keira and Roland play a game of reverse chess. Initially,
Roland chooses a positive integer n > k

2023
. Keira places k kings on k distinct squares

of a 2023 × n chess board. Then Roland places a rook on an unoccupied square of the
board. Both players then take turns moving any number (possibly zero) of their pieces,
with Keira starting first. Each king cannot move to a square occupied by another king,
but it can capture the rook. Furthermore, if Keira chooses to move more than one king
in her turn, she moves them one at a time. Roland’s rook is not permitted to capture any
king, nor may it pass through a square occupied by a king.

For which k can Keira guarantee to capture Roland’s rook, regardless of Roland’s moves
or choice of n?

(A king can move exactly one square in any horizontal, vertical or diagonal direction. A
rook can move any number of squares in a horizontal or vertical direction. One piece
(rook or king) captures another by moving to the square it occupies.)

Solution

We will show the answer is k ≥ 1012.

We first show that Roland can avoid capture if k ≤ 1011. Let n be the number of rows.
Choose n > 2027 × 1012, so that there always exists a row which is at least 1014 rows
away from any rows occupied by a king. Call such rows safe. We will show that Roland’s
rook can avoid capture by moving between safe rows.

Initially, Roland places his rook in a safe row. After Keira’s first turn, Roland moves the
rook to the leftmost column. In each subsequent turn, Roland checks whether there is a
king in the same column as his rook.

• If there is no king in the same column, then Roland can move the rook vertically to
a safe row.

• If there is a king in the same column, then Roland will move the rook two squares
to the right.

The second case can occur at most 1011 times, since a king can only move by at most
one column per turn, so a different king is needed to block the rook’s column each turn.
After at most 1012 turns (including the first turn where Roland moved the rook to the
leftmost column), Roland can move his rook vertically to a new safe row. Note that Keira
will have taken at most 1013 turns during this, which is not enough to capture the rook
which started on a safe row.

By repeating this method, Roland’s rook can move between safe rows and avoid capture
indefinitely if k ≤ 1011.

We now show that k = 1012 (and hence k ≥ 1012) kings are enough to capture the rook.

Keira moves the kings until there is a king in each of the topmost squares of columns
1, 3, . . . , 2023. Label these kings with K1, . . . , K1012, from left to right. For each i, assign
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Ki to guard columns 2i − 1 and 2i (with K1012 only guarding the rightmost column).
After achieving this, let us assume that the rook is not in the topmost column on Keira’s
move, otherwise the kings can immediately capture it.

The kings move down by one row every turn, so that each king moves to one of the two
squares in its assigned double-column in the row below. If the rook is in the double-
column guarded by Ki, then Ki will choose its move so that it is in the same column as
the rook. As a result, the rook must always be below the row occupied by the kings. The
game will eventually reach a state where, after its move, the rook is in the row directly
below the kings. Keira can then capture the rook on her next move.
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